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Resonance in open harbours 
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The effect of depth variations near the mouth of harbour-like geometries is invest- 
igated. It is found that some modes of oscillation that, for uniform depth, would decay 
rapidly can be trapped very effectively when moderate increases in depth occur at 
the seaward end of the harbour. 

1. Introduction 
Analytical studies of small-amplitude water waves have shown that there are 

conditions that can lead to resonant or trapped waves in coastal regions. There are 
roughly two types of model geometries in which resonant behaviour has been shown 
to exist. The first group consists of harbours that are connected to  the outlying ocean 
via a narrow channel or constriction. The frequencies a t  which long-term ringing can 
occur in such a geometry are then closely related to the natural frequencies associated 
with the shape of the virtually finite interior domain. A constant-depth hypothesis 
is characteristic of these studies (Ippen 1966; Krautchenko & McNown 1955; Lee 
1971). 

More recently, wave trapping has also been shown to occur in unbounded domains. 
Coastline regions with an appropriate offshore depth variation can support waves 
whose structure confines the bulk of the energy to the immediate vicinity of the shore, 
resulting in certain types of persistent waveforms. Owing to the analytical difficulties, 
variable-depth models are typically studied in either one space dimension (Kajiura 
1961 ; Roseau 1952) or in geometries where the governing equations are separable 
(Lautenbacher 1970; Shen, Meyer & Keller 1968). 

I n  this study, some of the consequences of variable width and changing depth are 
explored via the linear shallow-water equations in geometries resembling an open 
(unconstricted) bay such as that of figure 1.  The e-folding time of oscillations that 
are initially localized in such a ‘harbour ’ would be very small if the depth of the cavity 
were the same as that in the reservoir. It can be shown, however, that  there are many 
idealized planform geometries for which the inclusion of significant deepening in the 
seaward direction results in no radiation losses from the cavity. Thus i t  seems highly 
plausible that, for some real open-bay geometries, the observed slow decay rates of 
selected modes are due to this implication of the geometry. One possible example of 
the phenomenon would be the long-term ringing of particular modes in some harbours 
after inundation by a tsunami. 

I n  this paper, the shallow-water problem is formulated for a family of geometries, 
each of which is a simplified counterpart of that in figure 1 .  Initially, the objective 
is to calculate the transmission properties for wave radiation from the cavity into 
the reservoir. Subsequently, these results are used to determine the complex natural 
frequency of the system in the mode of interest. 
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It is not the objective of this study to provide detailed information concerning the 
oscillations in any particular real harbour, nor is there any intent to address the 
excitation by external sources of such modes of oscil1ation.t Rather, the aim is to  
characterize clearly the conditions under which effective trapping can occur and to 
provide a quantitative account of the parameter dependence of the decay time. 

2. Field equations and idealized geometries 
The appropriate differential equation for the study, in the linear regime, of waves 

whose horizontal scale is large compared with depth, is the linear shallow-water 
equation (Stoker 1957) 

(2.1) 
1 

9 
K(2, y") V W  + VK . V@ = - a,, 

for the velocity potential @(Z, y", t ) .  This equation governs the dynamics of the fluid 
bounded by an underlying depth distribution K(Z, y"), and by vertical sidewalls, on 
which the boundary condition a@/& = 0 is imposed. The theory is well-suited for 
this analysis owing to its relative simplicity and, given typical harbour parameter 
values, its ability to yield accurate answers. A harbour profile representative of those 
to be considered is shown in figure 1 .  

The bay geometries are taken to be highly idealized rectangular gulfs, with the back 
end of the harbour a t  Z = - z, opening out into the deep ocean as Z becomes positive. 
To the left of 2 = 0, the profile tends to  a constant depth h, and a width 2bn. For 
simplicity the variety of profiles is further limited to those shapes where ZI2bn is 
substantially greater than 1.  In  principle, no such limitation is necessary, but the 
calculation for shorter geometries would be more difficult and would add little insight 
into the phenomenon. 

I n  such geometries, i t  can be expected that after some initial excitation (e.g. a 
tsunami) the behaviour near 2 = -2 will eventually settle into some combination 
of the parallel-plate waveguide modes. To examine the possibility of trapping some 
of these modes in the harbour's interior, i t  is useful to consider first the steady-state 
wave problem associated with the infinite geometry suggested by the dotted lines in 
figure 1. The question may then be phrased- what is the reflection coefficient 
associated with waves incident from the left on the transition region, and, in 
particular, under what conditions will these waves undergo such strong reflections 
that, owing to the variable geometry in Z 5 0, they are virtually (or completely) 
confined to the interior of the harbour 2 The central task of this study is to find the 
reflection coefficient as a function of the geometry-characterizing parameters, but, 
in $5 the answers derived for the idealized shapes will be used to determine the 
amplitude decay rate in a harbour of finite extent. 

Equation (2.1) is cast in dimensionless form through the introduction of a 
normalized depth function h and new coordinates u, v,  where 

2 = ub, y" = vb, 6 = h , h ( ~ , y ) .  

Then, for ' steady-state ' waves 

@(Z, y", t )  = e c i w t  $(u, w) 

t For the tsunami excitation, for example, the deposition of energy is associated with a highly 
nonlinear inundation process. 



Resonance in open harbours 22 1 

/ 

FIGURE 1.  Idealized geometry. 
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the governing equation becomes 

h(u,v)V2$+Vh.V$+Kt$ = 0, 

where a dimensionless wavenumber Kt = wb/(gh,)f  has been introduced. 
I n  53, a family of conformal-mapping functions is adopted that relates a set of 

interesting geometries in the physical (u, v)-plane, to  a single, simpler geometry in 
the mapped domain. The competing effects of depth and width variation will then 
be explicit in the new equation for $. 

3. Conformal mapping of the shallow-water equation 
The region in the (u,v)-plane is mapped onto an infinite strip of width 277 in the 

(x, y)-plane (figure 2). The physical and mapped domains are related by an analytic 
function f of the complex variable z : 

w = u+iv =f(z) =f(x+iy).  

For such a function, the following statements are true: 

with 

( 3 . 1 ~ )  

(3.1 b )  

now exhibits an effective wavenumber K t  I f ( z ) l z  that is the function of position. This 
is characteristic of an inhomogeneous medium and it  depends only on the width 
variations. 

8-2 
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A mapping function with sufficient flexibility to be a suitable approximation to  

the most macroscopic features of the interesting geometries is developed in stages. 
Consider first the function f with derivative 

j’ = l + e Z .  (3 .2)  

The strip in the z-plane maps to  the entire w-plane exterior to the two cuts emanating 
from ( - 1 ,  n) and ( - 1 ,  - n) (figure 3). The dotted lines in the w-plane are the images 
of the three lines z = x+ian. For different values of a (0 < a < 1) the parallel lines 
z = x+ian correspond to the streamlines (a curve along which aq5lan = 0) of the 
potential-flow problem associated with the semi-infinite plate geometry in the w-plane. 
Alternatively, the z-variable can be scaled by a, defining a new mapping 

w’ = 1 +eaz, (3.3) 

or, upon integration, aw = az+eaz. (3.4) 
The images of the lines z = x f i n ,  for different values of a, generate streamlines 
symmetric about the u-axis, but uniformly magnified in u and v by a factor l/a; a 
consequence made evident by (3.4). The latter function is preferable to  (3.2) since 
the spacing of the boundaries at u = - 00 in the w-plane is the same for all values 
of a. The parameter a determines the ‘flare angle ’ of the cavity. As a -+ 1 ,  the profile 
opens most rapidly, and as a+O the harbour opens very gradually. I n  this case, 
however, the region where the channel’s widening is most pronounced tends to + co 
since it is scaled by l/a. A second parameter /3 is introduced to circumvent this 
difficulty. With a = 1 and /3 $: 1, the mapping 

w’ = f ( z )  = (1 +eaZ)p  (3.5) 
takes the infinite strip in the z-plane to a horn-shaped region (figure 4). The horn opens 
to include a small flare angle 2nB when /3 is small. With a less than 1 the corners are 
rounded out and the dotted lines show the images of z = x & in, which form a net flare 
angle of snap. This method of creating slowly varying profiles localizes the onset of 
opening to the neighbourhood of the origin. The parameter /3 is also used to prescribe 
the curvature of the boundary near u = v = 0. Thus a variety of shapes can be studied 
which all have the same net flare a t  + 00. The extent to which the reflection process 
is governed by the local geometry can then be evaluated. 

A third parameter 6 (0 < 6 < 1)  is introduced to generate shapes that are not 
symmetric about the u-axis. As an extended form of (3.3), the mappingf(z) with 
derivative 

takes the lines z = x+in and z = x- in  into curves in the (u, v)-plane whose final 

f ( z )  = 1 +  YO e&+W (yo = M a  - (9, (3.6) 
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FIGURE 5. Symmetric harbour shapes with opening angle 0 6  x 2n. 

FIGURE 6. Symmetric harbour shapes with opening angle 0 5  x 27r. 

angles with respect to the u-axis are an and -an respectively. The spacing of the 
boundaries a t  u = - co in the w-plane is again the same (277) for all values of a and 
S, and the net included angle a t  u = + cg is now (a+ 6)n. Furthermore, the function 
f ( z )  as given by (3.6) can again be raised to the power /3 to control the local curvature 
near the origin. Various shapes generated by the final mapping function f, with 
derivative 

are shown in figures 5-7. An alternative description of the harbour shapes generated 
by (3.7) can also be used. Specifying the net opening angle 2ny ( = (a + S) np) and the 
minimum radii of curvature p + ,  p- of the top and bottom branches of the profile 
is equivalent to specifying a, 6, /3 in (3.7) (see the appendix), and usefully separates 

f(.) = (1  +e% e4(a+"z)P, (3.7) 
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FIGURE 7. Asymmetric harbour shapes. 

the local and far-field descriptions of a given shape. Figures 5 and 6 show the upper 
halves of symmetric bays (a = 8, p+,p- = pmin) that  open to  include angles of 
0-6 x 277 and 0.5 x 277, respectively. Two additional examples with y = 0.6 and 0.5 are 
given in figure 7 which are asymmetric about u = 0. For each harbour shape in the 
three figures, a dashed line is drawn representing the image of a line x = constant 
in the mapped plane, which terminates a t  the point of minimum radius of curvature 
of the boundary. 

The depth function is chosen to have simple behaviour in the mapped plane. Only 
functions h(u,w) are considered that reduce to  h(x) when mapped. I n  the physical 
plane, constant-depth contours intersect the boundaries a t  right angles, and the 
dashed lines in figures 5-7 are examples of such contours. The function h(x) to be 
used is h(x) = a( 1 +h,) ++(h2 - 1) tanh +s(x+ SHIFT), 

where h, is the final depth a t  x = m, 2nls is a rough measure of the depth transition 
length, and the position of the mean depth +( 1 + h,) is located by specifying the value 
of SHIFT. When - S ( ~ + S H I F T )  % 1 ,  h(x) is equal to 1.  As x increases, the depth 
increases monotonically and approaches its final value h, when s (x  + SHIFT) % 1 .  The 
parameters allows for local adjustment of the depth contours while retaining the same 
far-field values. Graphs of h(x) for h, = 2 and various values of s, are given in 
figure 8. 

With the mapping function f ( x )  and depth h(x) as specified, a parametric study may 
now be undertaken for solutions of (3.1). Each set of values (a ,  8, p ,  s, h,) in (3.1) 

(3.8) 



Resonance in open harbours 

Depth function: 3 +f tanh ~ S X  

225 

2 

2 I- 

l l  I 1 I I I 
- 4 - 2  0 2 4 6 

( x ( t ) )  

FIGURE 8. Depth functions. 

corresponds to a different harbour in the physical (u, v)-plane. Before detailing the 
solution procedure, however, the origins of the resonance will be outlined by 
considering (3.1) directly. 

The single derivative term in (3.1) is eliminated by defining @ such that 

46(z, y) = h-%J4 9% Y). 

V2@ + P(X, y) @ = 0, The resulting equation, (3.9) 

where 
(3.10) 

exhibits the possibility that variable-depth contributions may, in some regions, be 
sufficient to produce a negative value for P(z ,  y). More precisely, the rapid exponential 
growth associated with widening, 

Kt I f ( X ) l 2  = 3 (1 + 2 & + b  cos ( y ~ + ~ ( a + & ) ~ ) + e ( ~ + ~ ) , ) ~  (yo = $n(a-&)), h h 

and the manner in which the slope h, enters the expression 

1 ( %)2 + ; (%), , 
4 h  

suggest that negative values of P(z,  y) occur near the origin. One possibility for h(x), 
together with its consequences, is illustrated in figure 9. In  both limits x + & 03 ,  

K ;  
P @ > Y )  = h If(412 > 0, 
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FIGURE 9 

and wavelike solutions are expected. To the left of the origin, however, where 

yy+;(:)z 4 h  > 0 

and I f ( z ) l z  is moderate in size, proper adjustment of the parameters leads to a region 
in the strip where exponential (non-oscillatory) solutions prevail. There exist two 
‘turning lines’ in the strip, and, as with turning points in ordinary differential 
equations, significant reflections occur as a wave encroaches upon this zone. It is 
emphasized that the existence of a region in the strip where P(x,  y) < 0 depends only 
on the geometry of the harbour. I n  particular, the tunnelling zone is independent of 
the boundary conditions imposed a t  x = +_ co . Thus not only may waves originating 
in the harbour have trouble getting out, but i t  is also true that waves in the ocean 
propagating landwards may be reflected back out to sea, in such a way that they 
have little impact on the inner portions of the bay. Though the method of solution 
to be described in $4 would be entirely appropriate for this more complicated 
problem, its solution will not be considered here. For the purpose of characterizing 
the qualitative features of the resonance, only the computationally simpler case of 
modes leaking out of the harbour will be dealt with in this study. This leads to the 
simplest set of boundary conditions and addresses the issue of possible long-term 
ringing in a harbour after the arrival of a tsunami. 

4. Eigenfunction representation 
The regular geometry of the mapped plane suggests the representation 

W 

which satisfies the boundary conditions a$/dy = 0 when y = fn. The variable 
coefficient term (in y) of (3.10) is expressed in the product-series form 

l j ” ( z ) 1 2  = [1+2  exp (+(a+S)x) cos (2nla-S)+:(a++)y)+exp(a+S)x]B 

co 

= 1 + z am@) cos *(y-n), 
m=o 

to ensure that a,(x) + 0 as x --* - co , for all m. Inserting the two series representations 
into (3.9) yields a coupled system of ordinary differential equations for the mode 
functions )CI.Jx). The plane-wave mode (n  = 0) is governed by 
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and for n 1 the equations are 
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where 

The behaviour of the nth mode is determined by 

K2 
Sn(X) h (1+ao(x)+#u2,(x))-G-an2 (4.3) 

when coupling is negligible, where S, represents the modal decomposition of (3.10). 
As x + - 00, where depth and width variations cease, 

S, --f Ki- in2  = K2,, 

and wave motion only occurs if K2, > 0. The long-wave (small-KO) assumption 
inherent in this development implies that  most modes will be evanescent when x + 0. 
I n  this region the system of equations simplifies to 

$i+K2,+, = 0 (n  = 0,1,2 ,... ). (4.4) 
The complete solution in this domain is a collection of parallel plate waveguide modes 

e-iwt cos an@--) [ A , e i K n x +  B ,  e c i K n 2 ] .  

At a fixed value of x ,  this represents the 'sloshing mode ' (or ringing) behaviour within 
the idealized harbour. Energy is released into the outlying ocean by the combina- 
tion of terms eciWtA, e i K n x .  Reflected waves e-iWtBn e - i K n s  are present owing to the 
variable geometry. The complex constants R ,  = B J A ,  are defined as the nth-mode 
reflection coefficients, and their size is a measure of the amount of wave blocking 
associated with that mode. 

This study will be limited to the simplest, and, in view of the wave cutoff in K,,  
most likely case of mode 1 ( -  sin iy) ringing within the harbour. The boundary 
condition a t  x = - co for this situation is given schematically as 

The first column in the matrix consists of forward-moving waves where the first odd 
mode has unit amplitude while the remaining mode amplitudes are set equal to zero. 
The second column contains reflected waves with unknown complex amplitudes. 
Propagation in the mode requires that KO be greater than 0.5. As the modenumber 
increases, a value of n occurs for which K2, = K,2-in2 < 0, and the branch of the 
square root is chosen to secure decaying solutions in the negative domain. The further 
restriction KO < 1 will also be imposed. This merely ensures that only @o and are 
nonvanishing as x + -- 00, thereby reducing the computational effort. 

The boundary conditions on the $, a t  x = + co are chosen to correspond to 
outgoing waves in the physical (u,v)-plane. Owing to the unbounded behaviour of 
the Fourier coefficients a,(x) in ( 3 . 2 )  as x +a, it  proves advantageous to  use a new 
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set ( t ,  #,) of dependent and independent variables. Though the equations which result 
will not be recorded here, i t  is of some interest to  note that the ‘optimal’ choice of 
variables is dictated by the mapping function f :  

t = x+erz, $, = ( ~ + e ~ z ) + $ ,  ( y  =&a+&)/?), (4.6) 

where t represents a simplified form of f(z) along the line of effective symmetry y = yo 
in the mapped plane. When (4.2) is recast in terms of t  and #,, the system decouples 
to (4.4) as t + - 00 (since t + x and 4, + $, in that limit) and also decouples to  

(4.7) 

as t + + 00. I n  contrast with the negative - t  domain, all modes have oscillatory 
solutions as t --+ + 00, for all KO, provided the final depth h, is finite. This insures that 
there will always be some energy leakage out of the harbour. From (4.7), incoming 
and outgoing waves may now be readily distinguished, and the radiation condition 
is enforced provided that each mode is forced to take the limiting form 

as t + co, where T, are the unknown transmission coefficients. This completes the 
specification of the two-point boundary-value problem. Before presenting the 
numerical results, however, an important feature of the governing equations should 
be noted. Symmetry of the harbour profile (p+ = p - ,  or a = 6 in the mapping 
function) manifests itself in a significant simplification of the coupled system 
(4.2). The left-hand side of (4.1) remains unchanged when y is replaced by -y. 
This invariance extends to the right-hand side for all y provided that U , ~ + , ( X )  = 0 
(m = 0,1,2,. . .), implying an even/odd decoupling of the system. A wave propagating 
in the nth mode 4, is only coupled to other modes #m when m has the same parity as 
n. Thus with the boundary conditions (4.5) and (4.8), no even-mode behaviour is 
initiated within the channel when a = 6. Some of the implications of this fact will 
be drawn in the next section. 

The solution of the coupled system, for selected values of a, 6, ,8, s, h,, is 
accomplished numerically. The linearity of the problem, together with the simple 
form of the boundary conditions, suggest the use of a superposition technique 
(Roberts & Shipman 1972). A collection of initial-value problems associated with (4.2) 
is solved numerically, each with appropriate end conditions so that any linear 
combination of these solutions satisfies one boundary condition. The only remaining 
task is to find that particular linear combination which satisfies the second boundary 
condition. The desired reflection coefficient R, is then determined algebraically once 
the #, and 4; are known. 

5. Discussion and numerical results 
The boundary-value problem is solved with selected sets of shape- and depth- 

function parameters in order to quantify the dependence of the reflection of the single 
incident mode eiKl sin & on those parameters. Of principal interest is the comparison 
of IR,(K,)l in the case of constant depth (h, = 1 )  with those lRl(Kl)l curves obtained 
for the same harbour shape ( y ,  p + ,  p - )  but with variable depth incorporated via (3.9). 
The range of parameters for which interesting behaviour in lRl(Kl)l is anticipated 
can be delimited by examining S,(x) given in (4.3). 
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The major feature governing the reflection due to changing depth appears in (3.10), 
prior to the eigenfunction decomposition. From that equation it is evident that, if h(x) 
increases more rapidly than If’(z)lz as x +a, then the reflected wave must have unit 
amplitude. In  the eigenfunction description (4.2), this corresponds to  a one-turning- 
point problem where Sl(x < xo) > 0 and Xl(z > xo) < 0 for some xo, and wave 
trapping within the harbour is guaranteed. The numerical results have shown, 
however, that  the less dramatic depth function with h, = 2 leads to  values of Rl(Kl) 
that  are so close to 1 that, over the limited range of K ,  for which this statement is 
true, no new information is obtained by increasing the final depth. All of the 
variable-depth results recorded here were obtained using h, = 2. Furthermore, the 
value of SHIFT in (3.9) was chosen so that for all of the symmetric profiles in figures 
5 and 6 the mean depth (8) is located along that curve which terminates a t  the point 
of maximum curvature on the boundary. These are shown as the dashed lines in 
figures 5 and 6. This choice is arbitrary, though, to a degree, it standardizes the 
various shapes. Loosely stated, half of the net depth variation is accomplished within 
the harbour, and the remaining changes take place in the region exterior to  the point 
of maximum rate of opening, for each geometry. 

Specifying h, and SHIFT in this way ensures that not only will the mapping 
function dominate as x + co, but that a two-turning-point problem emerges with 
Sl(x < xo) > 0, Sl(xo < x < xl) < 0 and S,(x > xl) > 0, for some xo and xl. The size 
of (RII correlates with the size of Ixl-xoI. The incident wave must negotiate a region 
where the fundamental solutions are non-oscillatory, and its ability to transmit any 
energy through the region diminishes as Ixl - xoI increases. A simple model can be used 
to clarify the nature of the dependence of lRll on the remaining parameters p+ , p- , 
8, 7.  

The incident-wave shape a t  u = - co can be viewed as a single cross-wave whose 
successive reflections within the parallel-wall region produces a standing wave in 
w (sin #u) and allows for propagation in the positive u-direction (eiK1u--iot) (figure 10). 

As the wave encroaches on the variable-depth region, the downstream side of a 
wavefront tends to move faster, since locally c = (gh)! is larger, causing the wave 
vector K to turn. If the depth profile is such that 8 --+ $7 within the parallel boundary 
domain a standing wave is established and lRll must equal 1 .  The geometries that 
would lead to such a result are those where s + 0, so that the refractive effects of 
variable depth begin further to the left, and those where p + , p -  --+ 0, SO that half of 



230 C. F. Noiseux 

0.3 

0.2 

- - 

- - 

0.1 - - 

I I I I I 1 

\ 

1 1 I I I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 
Kl 

0 0.1 0.2 0-3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 
Kl K ,  

FIGURE 11 ( a d ) .  Fort caption see facing page. 



Resonance in open harbours 23 1 

0 . 2 1  i 

I I 1 I I I 
0' 0.1 0.2 0.3 0.4 0.5 0.6 

K, K, 
FIGURE 11. IR,(K,;s)l for (a) y = 0 6 ,  pmin x 2.8; ( b )  06, 1.3; (c )  0 6 ,  0; 

(d) 05 ,  5 .2 ;  ( e )  05, 2.2; (f) 05, 0. 

the net depth variation is confined to the channel. If changes in h(x )  only begin where 
the harbour has started to widen substantially (p+,p-  9 0(1), s 2 0(1)), the wall 
reflections can no longer produce a standing wave, and the ensuing leakage of energy 
reduces the value of IRJ. These trends are in evidence in all of the numerical results 
that follow. 

Primary consideration is given to symmetric profiles for which solutions are 
obtained by using only the odd-numbered mode equations in (4.2). The combined 
effects of variable width and depth can be assessed in general terms using these 
simpler shapes. The magnitude of the reflection coefficient R, is plotted as a function 
of Kl in figure 11 for each of the six symmetric shapes shown in figures 5 and 6. Each 
graph gives IRl(K,)J for a fixed harbour profile, where only the depth transition length 
s is varied. Note that, for a given opening angle 2ny, those graphs (figure l l c , f )  
corresponding to geometries where p and s are small invariably show the maximum 
lRll values. Not surprisingly, the distance over which S,(x) < 0 in the mapped plane 
is also greater in these cases. 

Asymmetry of the harbour shape will necessarily imply both even- and odd-mode 
behaviour. Since no natural harbour possesses pure symmetry, the key issue is to 
determine the extent to which asymmetry provides a radiational leak in the nearly 
resonant behaviour shown to exist in some of the simpler shapes. Appealing directly 
to the coupled system (4.2), i t  is apparent that, even under those conditions that lead 
to S,(x) < 0 in some region, the corresponding function S,(x) associated with the 
plane-wave mode is positive for all x. Thus a fraction of the wave energy incident 
from the left will be coupled into q5,, during its passage through the transition zone 
and will continue to propagate seaward. This energy leakage will necessarily diminish 
the value of JRl( that would have prevailed had the harbour been symmetric with 
roughly the same values of 27ry, p and s. The numerical results have shown, however, 
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that  strong leakage does not occur, and that the (R,I dependence on 2ny, s and the 
boundary curvature follows a pattern similar to that established for the symmetric- 
harbour results. 

Plots of lRll are presented for the profile in figure 7 in which a = 0.8, y = 0.4 and 
p = 1. The symmetric case that provides the most direct comparison with this 
example is given in figure 5 with a = 6 = 0.6 and /3 = 1. The boundary curvatures 
near u = 0 can be considered approximately equal, since p = 1 in both cases, and the 
net included angles a t  00 are the same. The potentially significant difference between 
the symmetric and asymmetric shapes being compared lies in the location of the mean 
depth. The consequences of this discrepancy are explored by obtaining I&,( plots for 
the two different locations of the mean depth shown in figure 7. The numerical results 
indicate, however, that just as these two positions straddle the location of the 
mid-depth contour in the corresponding symmetric harbour, the JRJ curves presented 
in figure 12 for the asymmetric harbour straddle the curves shown in figure 11 ( a ) ,  
where a = 6 = 0 6 .  An obvious correspondence between the symmetric and asym- 
metric harbours suggested by this result was found to prevail in all the numerical 
experiments with asymmetric shapes. The lRll values when p+ + p- will be very 
nearly the same as those generated by a symmetric shape with the same y and s values, 
and an averaged position of the mean depth. Thus the behaviour of the first odd mode 
at u = - 00 in an asymmetric profile can be regarded as nearly equal to  the total wave 
field a t  u = - co in an 'equivalent' symmetric harbour. 

The substantial increase in lRll found in both symmetric and asymmetric profiles 
(a doubling was not uncommon) due to the inclusion of seemingly benign variations 
in the local depth, indicates that  i t  cannot be simply an artifact of the highly idealized 
nature of the shapes. The details of the wave behaviour in a real harbour would, of 
course, never bc duplicated by this analysis. Yet, for an open harbour whose most 
macroscopic fratures near the bay entrance can be described by f ( z ) ,  the strong 
reflections shown to prevail using the idealized shapes could be a prominent 
component of the overall behaviour of such a harbour. One important manifestation 
of an increase in JR,I is outlined next, where the results for an infinite channel are 
used to forecast the durability of the wave motion in a harbour of finite extent. 

The total wave field a t  a distance far to  the left of the origin is given approximately 

$tot x (eiRl 21 + R, e-{"] ") sin + ePiot + o(eiK31zl). (5.1) 
by 

This expression is strictly valid for symmetric shapes bnly, though it can be used for 
asymmetric harbours using the correspondence rule cited above. A more convenient 
form of (5.1) for the present purpose is 

(5.2) 

where IR( = R, e i ~  and -7r < @ < 7r. A rigid wall placed a t  a value of u where (5.2) 
is appropriate disrupts the steady-state behaviour implicit in that equation, and the 
attendant boundary condition induces a complex-valued K,. The requirement 

= 2Ri sin ePiwt cos ( K ,  u + $i In R), 

implies that  

= o  

i l n R  nn 
2L I; Kl = - +--, 

provided that L is large enough that the final term in (5.1) can be ignored. The choice 
n = 0 corresponds to the lowest mode shape in u, and the resulting wave motion near 
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O" t 
0 U . L - J  0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0-5 

K ,  K ,  

FIQURE 12. IRI(K,;s)l when a = 0 8 ,  S = 04, 1 = 1 ,  and SHIFT x - 0 8  (a )  and 0 ( b ) .  

the wall is described by 

@ In IR' cos - (u+ L )  
2L 

= 2& sin e-iwt [cosh - 
2L 

+ i s i n h g  ( u + L )  
2L 

Although (5.3) is an appropriate description only in the harbour's innermost region, 
it can be used for a qualitative assessment of the reflection process throughout the 
harbour. The small value of @/2L implies a very long wave, whose shape near u = - L 
coincides with that of a wave completing a half-cycle in a distance 2Lnl@. In  the 
nearly resonant cases, the phase was found to approach n as lRll + 1 .  Thus the 
'effective length' of the harbour is 2L when (R,[ + 1, and, consistent with total 
reflection, a standing wave in u emerges. When less than total reflection prevails in 
the infinite-harbour geometry, the wave amplitude in the finite domain decays 
owing to the complex-valued frequency. The frequency w and the wavenumber 
K,  = i In R/2L are related by 

implying the following approximate formulas for the real and imaginary parts of w ,  
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valid when Iln RI/L 4 1 : 

The damping factor, when written using the dimensional lengths of figure 1, is then 

where To = 2nE/(gho)i is the period of the natural mode of oscillation in the Zdirection. 
Equation (5.4) exhibits the dependence of the e-folding time on R, which, to cite a 
mild example, is increased by roughly a factor of 6 as IRI increases from 0.5 to 0.9. 

6. Conclusions 
It has been established that there are geometries (planforms and depth variations) 

for which, in the non-dissipative approximation, the wave energy in selected modes 
will not leak out a t  all. Furthermore, the results indicate that, for more realistic 
geometries (h,  + a), mild variations in the depth can still provide a very effective 
trapping mechanism that dramatically increases the e-folding times of some modes. 
It therefore seems reasonable to conclude that in real open-bay geometries the 
balance between the deepening and the planform geometry exploited in the foregoing 
analysis could be a substantial contribution to  the long decay times that are 
sometimes observed in such harbours. 

Some of the work reported here was included in a doctoral thesis submitted to 
Harvard University in June 1980. The author is deeply grateful for the continued 
guidance provided by his thesis advisor, Professor George F. Carrier. The advice and 
help of Professor J. L. Sanders and Professor D. G. M. Anderson is also gratefully 
acknowledged. Funding for this research was provided by the National Science 
Foundation under Grants MCS78-07598 and PFR79-21774. 

Appendix. Properties of the mapping function 
I n  this appendix the formulas used to describe the harbour profiles in the 

dimensionless physical plane are derived. Relating the mapped plane x+ iy  to the 
physical plane u + iv requires a numerical procedure, since 

f'(z) = (1 +exp (+im(a-&)) e&(a+S)Z)P 

is not integrable in closed form. An expression for the curvature of either the top or 
bottom boundary can be derived immediately, however, as i t  involves only derivatives 
off. The curvature K i s  given by 

and the value of x that results in the minimum radius of curvature of the top (bottom) 
boundary is found by solving for x in the equation dK/dx  = 0 when y = n (y = - n ) .  

The u + iv and x + iy variables are formally related by the expression 
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FIGURE 13 

where the contour T is taken to be as in figure 13, terminating a t  the desired point 
x+iy.  The vertical segment of T yields a contribution iy, so that (A 1 )  can be written 
as a real integral: 

The term 1 +exp +im(a-6)) ei(a+S)(t+iY) may be written as ~ + i p  and cast as an 
exponential, thereby separating the real and imaginary parts of’the integrand. The 
variables u and v are then related (albeit in a cumbersome manner) to the resulting 
real integrals in x and y. 
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